US 2003/0212990 A1l

bigger installation scenarios—by an installation tool using
the deployment tool through this API.

[0016] The GUI can include a navigation tree window, a
deployment parameters window, a legend window, an infor-
mation window, and a repository preview. The navigation
tree window can include a hierarchical display of catalogs
and archives that a user may select for deployment. The
deployment parameters window can include a display of
parameter groups necessary for deployment of an archive.
The legend window can include a display of a description of
icons used in a deployment process. The information win-
dow can include a display of information for archives or
catalogs or both that are selected from the navigation tree
window. The repository window can include a preview of a
deployment repository after deployment.

[0017] The invention can be implemented to realize one or
more of the following advantages. The software deployment
tool can deploy software updates on a system in conjunction
with a system’s current configuration so that dependencies
are managed. The tool can match a current system configu-
ration with an updated configuration, and identify conflicts
between the current configuration and the update. The tool
can handle software changes, including file update deploy-
ment, database schema deployment and other update pack-
age deployment. The tool can be implemented using facto-
ries and interfaces for the handling of software types and
software server types, and so have an architecture that is
extensible by new software types and software server types.
Delivery archives contain software changes and additional
information for a specific target system type. Archives can
be implemented to extend the deployable archive types from
the J2EE specification (.car, .war, .rar) in a fully J2EE
compliant way. The additional information that extends the
archive types is embedded within such archives using mani-
fest files and an additional deployment descriptor. Thus,
such an archive satisfies the Java standard and extends it.

DESCRIPTION OF THE DRAWINGS
[0018]

[0019] FIG. 2 is a block diagram of a software data
archive data structure.

FIG. 1 is a block diagram of a system.

[0020] FIG. 3 is a flow diagram of a delivery process.
[0021] FIG. 4 is a block diagram of a supplementary
manifest.

[0022] FIG. 5 is a flow diagram of a process for selecting
a deployment engine.

DETAILED DESCRIPTION

[0023] As shown in FIG. 1, a target computer system 10
includes a J2EE server 12 and can run Software Delivery
Manager (SDM) 14, an implementation of a deployment
tool made in accordance with the invention. The computer
system 10 can be a test system, a quality assurance system,
a production system, or a combination of them, or any other
kind of data processing system on which software is
deployed.

[0024] SDM uses a repository 16. SDM manages and
deploys software delivery archives (SDAs)—the smallest
units of software modification—that are received for deploy-
ment into the system 10. SDAs might be received, for

Nov. 13, 2003

example, from a development system 18, on any suitable
carrier. The SDAs can be delivered in a software delivery
catalog. A catalog contains meta-data descriptions of its
SDAs, which the catalog bundles as logical deployment
units.

[0025] Tlustrated in FIG. 2, a software delivery archive
(SDA) 50 is a data structure having a delivery format for
software applications and software elements. The SDA 50 is
a ZIP and JAR-compatible archive format that can be used
as a container for other archives. JAR (Java Archive) is a
platform-independent file format used for aggregating many
files into one. For example, multiple Java applets along with
their requisite components (e.g., class files, images, property
files) can be bundled in a JAR file.

[0026] The SDA 50 contains a standard JAR manifest 52
and a supplementary manifest 54, which contains additional
context information, such as dependency information. The
SDA also contains an SDA deployment descriptor 56, with
software type specific deployment configuration data, and
one or more software files 58 for deployment.

[0027] An SDA that does not contain any other archives is
an atomic SDA. This is also the smallest unit for deployment
and patch delivery. However, SDAs can be nested, with the
manifest information being passed on to the SDA at the
highest level. SDA 50 is illustrated as including one nested
software delivery archive, SDA'60. SDAs can be combined
to a logical unit using a software delivery catalog, which is
a special kind of SDA that contains only references to other
SDAs.

[0028] A human deployer will generally be responsible for
configuring and deploying software packages on the system
10 (FIG. 1). A deployer typically configures the software to
be deployed, causes the configured software to be installed
on the system in the appropriate places, and may start the
software running. The additional deployment descriptor 56
of the SDA addresses the problem that deployment into
J2EE can require a lot of interaction between the deployer
and the J2EE engine. Rather than repeating this interaction
during each deployment, the SDA 50 carries information
from software development in the SDA deployment descrip-
tor 56 that facilitates the deployment process. This is a
transfer of application knowledge and developer expertise to
the customer site, allowing a deployer without deep appli-
cation knowledge to achieve successful and rapid deploy-
ment.

[0029] SDM 14 triggers the deployment of the SDAs at
the customer site. Depending on the software type of the
SDA to be deployed and on the target system’s server type,
SDM 14 uses a specific engine to carry out the deployment.
These engines (or factories) are implemented for each
software server type SDM 14 supports. As illustrated in
FIG. 5, SDM receives (70) an SDA, determines (72) its
software type, determines the target server type (74), and
selects (76) a factory or engine to perform the deployment.
Servers are generally typed in the repository 16 when they
are added. This can be done either manually or through an
API function of SDM 14. The server type for deployment is
identified through the element SoftwareType in the deploy-
ment descriptor.

[0030] For example, for deployment to a J2EE application
server, the corresponding engine interacts with the J2EE



